Computational Notebook - Methods applied to the hoard of Le Câtillon II in the project ClaReNet
Cite this as
Licenses
Data and Resources
Additional Info
| Field | Value | 
|---|---|
| Author(s) | Chrisowalandis Deligio ORCID ID: 0000-0002-5708-4271 | 
        
| Maintainer | Caroline von Nicolai | 
| Version | 1.0 | 
| Last Updated | January 16, 2025, 11:41 (UTC) | 
| Created | June 23, 2023, 09:57 (UTC) | 
| Subtitle | Supplement to the paper C. Deligio/K. Tolle/D. Wigg-Wolf, "Supporting the analysis of a large coin hoard with AI-based methods" (CAA 2023 conference proceedings) | 
| Publisher | Deutsches Archäologisches Institut | 
| Funding | Bundesministerium für Bildung und Forschung | 
| Contributor(s) | Karsten Tolle ORCID ID: 0000-0002-9953-7638 David Wigg-Wolf  | 
          
| In Language | English | 
| Year of publication | 2023 | 
| Resource Type General | Computational Notebook | 
          
| DOI | 10.34780/kzw0-r608 | 
| Related Resources | Buslaev, Alexander, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A. Kalinin (2020). Albumentations: Fast and Flexible Image Augmentations. Information 11, 2: 125. https://doi.org/10.3390/info11020125 Caron, Mathilde, Piotr, Bojanowski, Armand, Joulin, and Matthijs, Douze (2018). Deep Clustering for Unsupervised Learning of Visual Features. In European Conference on Computer Vision.2018. https://arxiv.org/abs/1807.05520 Deligio, Chrisowalandis, Tolle, Kasten, Wigg-Wolf, David (2023). Supporting the analysis of a large coin hoard with AI-based methods''. CAA 2023 conference proceedings (DOI follows). Heinecke, Andreas, Emanuel Mayer, Abhinav Natarajan, and Yoonju Jung (2021). Unsupervised Statistical Learning for Die Analysis in Ancient Numismatics. CoRR 2021, https://arxiv.org/abs/2112.00290 Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian (2019). CenterNet: Keypoint Triplets for Object Detection. CoRR 2019: https://arxiv.org/abs/1904.08189 Lundberg, Scott M, and Su-In, Lee (2017). A Unified Approach to Interpreting Model Predictions. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems 2017, 4768–4777: https://arxiv.org/abs/1705.07874 Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). Why should I trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. https://arxiv.org/abs/1602.04938 Rudin I. Leonid, Stanley Osher, and Emad Fatemi (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 1-4, 259-268. https://doi.org/10.1016/0167-2789(92)90242-F Simonyan, Karen, and Zisserman, Andrew (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, https://arxiv.org/abs/1409.1556 Taylor, Zachary McCord (2020). The Computer-Aided Die Study (CADS): A Tool for Conducting Numismatic Die Studies with Computer Vision and Hierarchical Clustering. Computer Science Honors Theses. 54. https://digitalcommons.trinity.edu/compsci_honors/54/  |